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Abstract The Next Generation LearnLib (NGLL) is a framework for
model-based construction of dedicated learning solutions on the basis
of extensible component libraries, which comprise various methods and
tools to deal with realistic systems including test harnesses, reset mech-
anisms and abstraction/refinement techniques. Its construction style al-
lows application experts to control, adapt, and evaluate complex learning
processes with minimal programming expertise.

1 Introduction

Creating behavioral models of un(der)specified systems, e.g., for documentation-
or verification-purposes, using (semi-)automated learning algorithms, has be-
come a viable method for quality assurance. Its practical impact increases with
the advances in computer resources and, in particular, with the ability to exploit
application-specific frame conditions for optimization. Still, creating fitting learn-
ing setups is laborious, in part because available learning methods in practice are
not engineered to be versatile, often being hard-coded for specific use cases and
thus showing limited potential for adaptability towards new fields of application.
The Next Generation LearnLib (NGLL) is designed to ease this task by offering
an extensive and extensible component library comprising various methods and
tools to deal with realistic systems including test harnesses, reset mechanisms
and abstraction/refinement techniques. A modeling layer based on the NGLL
allows for model-based construction of easily refinable learning solutions. Being
internet-enabled, NGLL supports the integration of remote components. Thus
learning solutions can be composed of mixtures of components running locally or
anywhere in the world, a fact that can in particular be exploited to learn remote
systems or to flexibly distribute the learning effort on distributed resources.

In the remainder of this paper, we will describe the technology underlying the
NGLL in Section 2, present model-driven creation of learning setups in Section
3, and outline the usefulness in a competitive environment in Section 4, before
we conclude in Section 5.
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2 Base Technology

The NGLL is the result of an extensive reengineering effort on the original
LearnLib [7], which has originally been designed to systematically build finite
state machine models of unknown real world systems (Telecommunications Sys-
tems, Web Services, etc.). The experience with the LearnLib soon led to the
construction of a platform for experimentation with different learning algorithms
and to statistically analyze their characteristics in terms of learning effort, run
time and memory consumption. The underlying learning technology is active
learning following the pattern of Angluin’s L∗ algorithm [2], which introduced
active system interrogation to automata learning. One of the main obstacles in
practical learning is the implementation of the idealized form of interrogation in
terms of membership and equivalence queries proposed by Angluin. This requires
an application-specific interplay of testing and abstraction technology, driving
the reengineering effort that created the NGLL.

The foundation of NGLL is a new extensive Java framework of data structures
and utilities, based on a set of interface agreements extensively covering concerns
of active learning from constructing alphabets to tethering target systems. This
supports the development of new learning components with little boilerplate
code and the integration of third-party learning technology, such as libalf [3].

All learning solutions we know of, like libalf, focus on providing fixed sets of
learning algorithms. In contrast, the component model of the NGLL extends into
the core of the learning algorithms, enabling application-fit tailoring of learning
algorithms, at design- as well as at runtime. In particular, it is unique in

– comprising features for addressing real-world or legacy systems, like instru-
mentation, abstraction, and resetting,

– resolving abstraction-based non-determinism by alphabet abstraction refine-
ment, which would otherwise lead to the failure of learning attempts [4],

– supporting execution and systematic experimentation and evaluation, even
including remote learning and evaluation components, and, most notably, in

– its high-level modeling approach described in the next section.

3 Modeling Learning Solutions

LearnLib Studio, which is based on jABC [9], our service-oriented framework
for the modeling, development, and execution of complex applications and pro-
cesses, is NGLL’s graphical interface for designing and executing learning and
experimentation setups.

A complete learning solution is usually composed of several components,
some of which are optional: learning algorithms for various model types, system
adapters, query filters and caches, model exporters, statistical probes, abstrac-
tion providers, handlers for counterexamples etc.. Many of these components are
reusable in nature. NGLL makes them available as easy-to-use building blocks
for the graphical composition of application-fit learning experiments.

Figure 1 illustrates the graphical modeling style typical for LearnLib Studio
along a very basic learning scenario. One easily identifies a common three phase



Figure 1. Executable model of a simple learning experiment in LearnLib Studio.

pattern recurring in most learning solutions: The learning process starts with a
configuration phase, where in particular the considered alphabet and the system
connector are selected, before the learner itself is created and started. The subse-
quent central learning phase is characterized by the L∗-typical iterations, which
organize the test-based interrogation of the system to be learned. These itera-
tions are structured in phases of exploration, which end with the construction
of a hypothesis automaton, and the (approximate) realization of the so-called
equivalence query, which in practice searches for counterexamples separating the
hypothesis automaton from the system to be learned. If this search is successful,
a new phase of exploration is started in order to take care of all the consequences
implied by the counterexample. Otherwise the learning process terminates after
some postprocessing in the third phase, e.g., to produce statistical data.

Most learning experiments follow this pattern, usually enriched by
application-specific refinements. Our graphical modeling environment is designed
for developing such kinds of refinements by supporting, e.g., component reuse,
versioning, optimization and evaluation.

4 Fast-cycle experimentation: The ZULU Experience

The ability to quickly design and extend learning setups, coupled with statisti-
cal probes and visualizations, was invaluable during the ZULU competition [1].
Various learning setups, involving different learning algorithms and strategies for
finding counterexamples, were evaluated in a time-saving manner in the graphi-
cal environment. The NGLL allows one to configure whole experimentation series



for automatic evaluation in batch mode, resulting in aggregated statistical charts
highlighting the various profiles. This way we were able to identify the winning
setup for the ZULU competition, by playing with variants of finding and evaluat-
ing counterexamples [8,6] and combining them to a continuous evolution process
for the construction of learning hypotheses [5].

5 Conclusion

The NGLL provides a machine learning framework, designed for flexibility, ex-
tensibility and reusability. It comprises LearnLib Studio, which enables quick ex-
perimentation with learning methods in research and practice, and thus helps to
design fitting learning setups for application-specific contexts. Being executable
jABC graphs, learning setups in LearnLib Studio can use every facility of the
jABC-framework. This includes step-by-step execution, transformation of learn-
ing setups into standalone applications using code generation, parallel and hier-
archical structuring of the models, model-checking, and automatic deployment
on various platforms. Many concepts only briefly mentioned, but not discussed
here in detail due to limited space, will be demonstrated during the tool demo.
In experiments the NGLL demonstrated the ability to learn models with approx-
imately 40,000 systems states and 50 alphabet symbols. The NGLL is available
for download at the http://www.learnlib.de website.
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